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Abstract

This paper introduces the notion of “relative gerbes” for smooth maps of manifolds, and discusses
their differential geometry. The equivalence classes of relative gerbes are further classified by the
relative integral cohomology in degree 3.
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1. Introduction

Giraud[9] first introduced the concept of gerbes in the early 1970s to study non-Abelian
second cohomology. Later, Brylinski[4] defined gerbes as sheaves of groupoids with certain
axioms, and discussed their differential geometry. He proved that the group of equivalence
classes of gerbes gives a geometric realization of integral 3 cohomology classes on man-
ifolds. Through a more elementary approach, Chatterjee and Hitchin[5,16] introduced
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gerbes in terms of transition line bundles for a given cover of the manifold. From this
point of view, a gerbe is a one-degree-up generalization of a line bundle, where the line
bundle is presented by transition maps. A notable example of a gerbe arises as the ob-
struction for the existence of a lift of a principalG-bundle to a central extension of the
Lie group. Another example is the associated grebe of an oriented codimension 3 subman-
ifold of an oriented manifold. The third example is what is called “basic gerbe”, which
corresponds to the generator of the degree 3 integral cohomology of a compact, simple and
simply connected Lie group. The basic gerbe overG is closely related to the basic central
extension of the loop group, and it was constructed, from this point of view, by Brylin-
ski [4]. Later, Gawedski–Reis[8], for G= SU(n), and Meinrenken[21], in the general
case, gave a finite-dimensional construction along with an explicit description of the grebe
connection.

This paper introduces the notion ofrelative gerbes for smooth maps of manifolds, and
discusses their differential geometry. The equivalence classes of relative gerbes are classified
by the relative integral cohomology in degree 3.

The organization of this paper is as follows. In Section2, the relative (co)homology of a
smooth map between two manifolds is discussed. When the map is inclusion, the singular
relative (co)homology of the map coincides with the singular relative (co)homology of
the pair. Also, for a continuous map of topological spaces, the relative (co)homology of
the map is isomorphic to the (co)homology of the mapping cone. In Section3, following
the Chatterjee–Hitchin perspective on gerbes, the notion ofrelative gerbe is defined for a
smooth mapΦ ∈ C∞(M,N) between two manifoldsM andN as a gerbe over the target
space together with a quasi-line bundle for the pull-back gerbe. It is also proven that the
group of equivalence classes of relative gerbes can be characterized by the integral degree
3 relative cohomology of the same map.

Another objective of this paper is to develop the differential geometry of relative gerbes.
More specifically, in Section4, the concepts of relative connection, relative connection
curvature, relative Cheeger–Simons differential character, and relative holonomy are intro-
duced. As well, it is proven that a given closed relative three-form arises as a curvature
of some relative grebe with connection if and only if the relative three-form is integral.
Further, it is shown that a relative gerbe with connection for a smooth mapΦ : M → N

generates arelative line bundle with connection for the corresponding map of loop paces,
LΦ : LM → LN.

2. Relative homology/cohomology

2.1. Algebraic mapping cone for chain complexes

Definition 2.1. Let f• : X• → Y• be a chain map between chain complexes overR where
R is a commutative ring. The algebraic mapping cone off [7] is defined as a chain complex
Cone•(f ) where

Conen(f ) = Xn−1 ⊕ Yn



1328 Z. Shahbazi / Journal of Geometry and Physics 56 (2006) 1326–1356

with the differential

∂(θ, η) = (∂θ, f (θ) − ∂η).

Since∂2 = 0, we can consider the homology of this chain complex. Define relative homol-
ogy off• as

Hn(f ) := Hn(Cone•(f )).

The short exact sequence of chain complexes

0 → Yn
j→ Conen(f )

k→Xn−1 → 0,

wherej(β) = (0, β) andk(α, β) = α gives a long exact sequence in homology

· · · → Hn(Y )
j→Hn(f )

k→Hn−1(X)
δ→Hn−1(Y ) → · · · , (2.1)

whereδ is the connecting homomorphism.

Lemma 2.2. The connecting homomorphism δ is given by δ[γ] = [f (γ)] for γ ∈ Xn−1.

Proof. Forγ ∈ Xn−1, we havek(γ,0) = γ. The short exact sequence of chain complexes
gives an elementγ ′ ∈ Yn−1 such thatj(γ ′) = ∂(γ,0) = (∂γ, f (γ)). δ is defined byδ[γ] =
[γ ′]. But, by definition ofj, j(γ ′) = (0, γ ′). Thereforef (γ) = γ ′. This showsδ[γ] = [f (γ)].
�

Definition 2.3. We call a chain mapf• : X• → Y• a quasi-isomorphism if it induces iso-

morphism in cohomology, i.e.,H•(X)
∼=→H•(Y ).

Corollary 2.4. f• : X• → Y• is a quasi-isomorphism if and only if H•(f ) = 0.

Proof. f is a quasi-isomorphism, if and only if the connecting homomorphism in the long
exact sequence(2.1) is an isomorphism. �

Definition 2.5. A homotopy operator between two chain complexesf, g : X• → Y• is a
linear maph : X• → Y•+1 such that

h∂ + ∂h = f − g (	)

In that case,f andg are called chain homotopic and we denote it byf � g.
Two chain mapsf : X• → Y• andg : Y• → X• are called homotopy inverse ifg ◦ f �

idX andf ◦ g � idY are both homotopic to the identity. Iff : X• → Y• admits a homotopy
inverse, it is called a homotopy equivalence. In particular, every homotopy equivalence is a
quasi-isomorphism.
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Proposition 2.6. Any homotopy between chain maps f, g : X• → Y• induces an isomor-
phism of chain complexes Cone(f )• and Cone(g)•.

Proof. Given a homotopy operatorh satisfying (	), define a mapF : Cone•(f ) →
Cone•(g) by

F (α, β) = (α,−h(α) + β).

Since

∂F (α, β) = (∂α, g(α) + ∂h(α) + ∂β) = (∂α, f (α) − h∂(α) + ∂β) = F∂(α, β),

F is a chain map and its inverse map isF−1(α, β) = (α, h(α) + β). �
Lemma 2.7. Let

be a commutative diagram of chain maps with exact rows. If two of vertical maps are
quasi-isomorphisms, then so is the third.

Proof. The statement follows from the five-lemma applied to the corresponding diagram
in homology, �

Proposition 2.8. Suppose that we have the following commutative diagram of chain maps,

such that Φ and Ψ are quasi-isomorphisms. Then the induced map

F : Cone•(f ) → Cone•(f̃ ), (α, β) 
→ (Φ(α), Ψ (β))

is a quasi-isomorphism.

Proof. The mapF is a chain map since,

∂F (α, β) = ∂(Φ(α), Ψ (β)) = (∂Φ(α), f̃ (Φ(α)) − ∂Ψ (β)) = (Φ(∂α), Ψ (f (α) − ∂β))

= F (∂α, f (α) − ∂β) = F∂(α, β).
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The chain mapF fits into a commutative diagram,

SinceΦ andΨ are quasi-isomorphisms, so isF by Lemma 2.7. �

Proposition 2.9. For any chain map f• : X• → Y•, there is a long exact sequence

· · · → Hn−1(kerf )
j→Hn(f )

k→Hn(cokerf )
δ→Hn−2(kerf ) → Hn−1(f ) → · · · ,

where j, k and the connecting homomorphism δ are defined by

j[θ] = [(θ,0)], k[(θ, η)] = [ηmodf (X)],

δ[(ηmodf (X))] = [∂θ] ∈ Hn−2(kerf ).

Here, η ∈ Yn and ∂η = f (θ) for some θ ∈ Xn−1. In particular, if f is an injection then
Hn(f ) = Hn(cokerf ), and if it is onto then Hn(f ) = Hn−1(kerf ).

Proof. Let f̃ • : X• → im(f•) ⊆ Y• be the chain mapf•, viewed as a map into the sub-
complexf•(X•) ⊆ Y•. We have the following short exact sequence

0 → Conen(f̃ )
i→ Conen(f )

k→ coker(fn) → 0,

wherek is as above andi is the inclusion map. Therefore, there exists a long exact sequence

· · · → Hn(f̃ )
i→Hn(f )

k→Hn(cokerf ) → Hn−1(f̃ ) → · · · . (2.2)

Let f̃
′
• : X•/kerf• → im(f•) be the map induced byf. Notice that sincẽf

′
is an isomor-

phism, thereforeH•(f̃
′
) = 0. By using the long exact sequence corresponding to the short

exact sequence

0 → kerf•−1
j̃→ Cone•(f̃ )

π→ Cone•(f̃
′
) → 0,

wherej̃(θ) = (θ,0), andπ(θ, η) = (θmod kerf, η), we see that̃j is a quasi-isomorphism.
Sincej = i ◦ j̃, we obtain the long exact sequence

· · · → Hn−1(kerf )
j→Hn(f )

k→Hn(cokerf ) → Hn−2(kerf ) → · · · .

To find connecting homomorphism, assume [ηmodf (X)] ∈ Hn(cokerf ) for η ∈ Yn. Then
∂η ∈ f (X), i.e.,∂η = f (θ) for someθ ∈ Xn−1. Since

f (∂θ) = ∂f (θ) = ∂∂η = 0
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then∂θ ∈ ker(f ). Also k(θ, η) = η modf (X) andj(θ) = i ◦ j̃(∂θ) = i(∂θ,0) = (∂θ,0) =
∂(θ, η). Thus, we have

δ[(ηmodf (X))] = [∂θ] ∈ Hn−2(kerf ). �

2.2. Algebraic mapping cone for co-chain complexes

If f • : X• → Y• is a co-chain map between co-chain complexes, the algebraic mapping
cone off is defined as a co-chain complex Cone•(f ) where

Conen(f ) = Yn−1 ⊕Xn

with the differential

d(α, β) = (f (β) − dα,dβ).

Since d2 = 0, we can consider the cohomology of this co-chain complex. Define relative
cohomology off • as

Hn(f ) := Hn(Cone•(f )).

Remark 2.10. Any cochain complex (X•, d) may be viewed as a chain complex (X̃•, ∂),
where X̃n = X−n and ∂n = d−n(n ∈ Z). This correspondence takes cochain mapsf • :
X• → Y• into chain mapsf̃ • : X̃• → Ỹ•, wheref̃ n = f−n, and identifies Cone(̃f ) and

C̃one(f ) up to a degree shift:

C̃one(f )n = Cone(f )−n = Y−n−1 ⊕X−n,

Cone(f̃ )n = X̃n−1 ⊕ Ỹn = X−n+1 ⊕ Y−n.

Thus,C̃one(f )n ∼= Cone(f̃ )n+1.

Using this correspondence, the results for the mapping cone of chain maps are directly
carried over to cochain maps.

2.3. Kronecker pairing

For a chain complexX•, the dual co-chain complex (X′)• is defined by (X′)n =
Hom(Xn,R) with the dual differential.

Proposition 2.11. Let f• : X• → Y• be a map between chain complexes, and (f ′)• :
(Y ′)• → (X′)• be its dual cochain map. Then the bilinear pairing

Conen(f ′) × Conen(f ) → R
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given by the formula

〈(α, β), (θ, η)〉 = 〈α, θ〉 − 〈β, η〉

for (α, β) ∈ Conen(f ′) and (θ, η) ∈ Conen(f ) induces a pairing in cohomology/homology

Hn(f ′) ×Hn(f ) → R.

Proof. It is enough to show that a cocycle paired with a boundary is zero and a coboundary
paired with a cycle is zero. Let (α, β) = ∂(α′, β′) and∂(θ, η) = 0. Therefore, by definition

α = f ′β′ − dα′, β = dβ′,

and

∂η = f (θ), ∂θ = 0.

〈(α, β), (θ, η)〉 = 〈α, θ〉 − 〈β, η〉 = 〈f ′β′, θ〉 − 〈dα′, θ〉 − 〈dβ′, η〉
= 〈f ′β′, θ〉− 〈α′, ∂θ〉− 〈β′, ∂η〉 = 〈f ′β′, θ〉 − 〈β′, f (θ)〉 = 0. (2.3)

Similarly we can prove that a co-boundary paired with a cycle is zero.�
Lemma 2.12. Iff• : X• → Y• is a chain map,and (f ′)• : (Y ′)• → (X′)• be its dual cochain
map, then Cone•(f ′) = (Cone•(f ))′.

Proof. Notice that Conen(f ′) = (Conen(f ))′ = (Xn−1)′ ⊕ (Yn)′. It follows from defini-
tions that

〈d(α, β), (θ, η)〉 = 〈(α, β), ∂(θ, η)〉.

Therefore differential of Conen(f ′) is dual of differential of Conen(f ). �

2.4. Singular, de Rham, Čech theory

In this section, two manifoldsM andN and a mapΦ ∈ C∞(M,N) are fixed.
Singular relative homology: Consider the push-forward mapΦ∗ : Sq(M,R) →

Sq(N,R), whereR is a commutative ring andSq(M,R), Sq(N,R) are the singular chain
complexes ofM andN, respectively. Singular relative homology is the homology of the
chain complex Cone•(Φ∗), and is denotedH•(Φ,R).

Singular relative cohomology: Consider the pull-back mapΦ∗ : Sq(N,R) → Sq(M,R),
whereR is a commutative ring, andSq(M,R) andSq(N,R) are the singular co-chain complex
of M andN, respectively. Singular relative cohomology is the cohomology of the co-chain
complex Cone•(Φ∗), and is denotedH•(Φ,R).

de Rham relative cohomology: ForΦ ∈ C∞(M,N), consider the pull back-map

Φ∗ : Ωq(N) → Ωq(M)
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between differential co-chain complexes. In this paper, the cohomology of Cone•(Φ∗) is
denoted asH•

dR(Φ) and called it “de Rham relative cohomology.”
Čech relative cohomology: Let A be aR-module, andU = {Uα} be a good cover of a

manifoldM, i.e., all the finite intersections are contractible. For any collection of indices
α0, · · · , αp such thatUα0 ∩ · · · ∩ Uαp �= ∅, let

Uα0···αp = Uα0 ∩ · · · ∩ Uαp.

A Čech-p-cochainf ∈ Čp(U, A) is a function

f =
∐
α0···αp

fα0···αp :
∐
α0···αp

Uα0···αp → A,

wherefα0···αp is locally constant and anti-symmetric in indices. The differential is defined
by

(df )α0···αp+1 =
p+1∑
i=0

(−1)ifα0···α̂i···αp+1,

where the “hat” sign means that the index has been omitted. Sinced ◦ d = 0, one can define
Čech cohomology groups with coefficients inA as

Ȟp(M,A) := Hp(Č(U, A)).

LetU = {Ui}i∈I ,V = {Vj}j∈J be good covers ofM andN, respectively, such that there exists
a mapr : I → J with Φ(Ui) ⊆ Vr(i). Let Č•(M,A) andČ•(N,A) be theČech complexes
for given covers, whereA is an R-module. Using the pull-back mapΦ∗ : Č•(N,A) →
Č•(M,A), the relativeČech cohomology is defined as the cohomology of Cone•(Φ∗).
Denote this cohomology by̌H•(Φ,A).

Suppose thatA is one of the sheaves[11,4] Z,R,U(1), Ωq. Denote the space ofk-
cochains of the sheafA on M andN, respectively, asCk(M,A) andCk(N,A). Here, the
differential is defined as above. Again, we have an induced map

Φ∗ : Ck(N,A) → Ck(M,A).

Denote the cohomology of Cone•(Φ∗) asH∗(Φ,A).

Theorem 2.13. There is a canonical isomorphism Hn
dR(Φ) ∼= Hn(Φ,R).

Proof. Let S•
sm(M,R) andS•

sm(N,R) be the smooth singular cochain complex ofM and
N, respectively[1]. Consider the following diagram:
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wherefn is defined byfn(ω) : σ 
→ ∫
∆n
σ∗ω, forω ∈ Ωn(M) andσ ∈ Ssm

n (M) is a smooth
singularn-simplex.g• is defined in a similar fashion. From these definitions, it is clear that
the diagram commutes.f • andg• are quasi-isomorphisms by de Rham Theorem[1]. Define
k• : Ω•(Φ,R) → S•

sm(Φ,R) by k•(α, β) = (f •−1(α), g•(β)). One can useProposition 2.8
and deduce thatk• is a quasi-isomorphism. There is a co-chain map

l• : S•(M,R) → S•
sm(M,R)

given by the dual of the inclusion map in chain level. In[24, p. 196]it is shown thatl• is a
quasi-isomorphism. Therefore, by usingProposition 2.8again,

Hn(Φ,R) ∼= Hn
sm(Φ,R).

Together, one can haveH•(Φ,R) ∼= H•
dR(Φ,R). �

Theorem 2.14. For Φ ∈ C∞(M,N), there is an isomorphism H
q
dR(Φ) ∼= Ȟq(Φ,R).

Proof. Let U = {Ui}i∈I andV = {Vj}j∈J be good covers ofM andN together with a map
r : I → J , such thatΦ(Ui) ⊆ Vr(i). Define the double complexEp,q(M) = Čp(M,Ωq),
whereČp(U,Ωq) is the set ofq-formsωα0···αp ∈ Ωq(Uα0···αp ) anti-symmetric in indices
with the differential ‘d’ defined as before. LetEn(M) = ⊕p+q=nEp,q(M) be the associated
total complex. The mapΦ : M → N induces chain mapsΦ∗ : En(N) → En(M). Let us
denote the corresponding algebraic mapping cone asEn(Φ). The inclusionČn(M,U) →
En(M) is a quasi-isomorphism[1, p. 97]. There exists a similar quasi-isomorphism for
N, and since inclusion maps commute with pull-back ofΦ, one gets a quasi-isomorphism
Čn(Φ) → En(Φ). Thus, the following isomorphism is obtained.

Ȟn(Φ,R) ∼= Hn(E(Φ)). (2.4)

The mapΩn(M) → E0,n(M) ⊂ En(M), given by restrictions of formsα 
→ α|Ui , is a quasi-
isomorphism[1, p. 96]. Again, these maps commute with pull back, and hence define a
quasi-isomorphismΩn(Φ) → En(Φ) that means

Hn
dR(Φ) ∼= Hn(E(Φ)). (2.5)

By combining Eqs.(2.4) and (2.5), one obtainšH•(Φ,R) ∼= H•
dR(Φ). �

Remark 2.15. A modification of this argument, working instead with the double complex
Čp(M,Sq) given by collection ofSq(Uα0···αp ), gives isomorphism betweeňCech relative
cohomology and singular relative cohomology with integer coefficients, hence

Ȟq(Φ,Z) ∼= H
q
S (Φ,Z).

2.5. Topological definition of relative homology

Let Φ : M → N be an inclusion map, then the push-forward mapΦ∗ :
S•(M,R) → S•(N,R) is injection.Proposition 2.9shows thatH•(Φ) ∼= H•(S(N)/S(M)) =



Z. Shahbazi / Journal of Geometry and Physics 56 (2006) 1326–1356 1335

H•(N,M;R).H•(N,M;R) is known as relative homology. Obviously, this is a special case
of what the author defined as a relative singular homology of an arbitrary mapΦ : M → N.

Given a continuous mapf : X → Y of topological spaces, define mapping cylinder

Cylf = (X× I) � Y
(x,1) ∼ f (x)

,

and mapping cone[14]

Conef = Cylf
X× {0} .

Let Cone(X) := X× I/X× {0}. There are natural maps

i : Y ↪→ Conef , j : Cone(X) → Conef .

Note thatj is an inclusion only iff is an inclusion. There is a canonical map,

h : Sn−1(X) → Sn(Cone(X))

with the propertyh ◦ ∂ + ∂ ◦ h = k, whereh is defined by replacing a singularn-simplex
with its cone, andk : X ↪→ Cone(X) is the inclusion map. Define the map

ln : Conen(f∗) → Sn(Conef ), (x, y) 
→ j∗(h(x)) − i∗(y).

Theorem 2.16. l• is a chain map and a quasi-isomorphism. Thus,

Hn(f ) ∼= Hn(Conef ).

Proof. Recall that∂(x, y) = (∂x, f∗(x) − ∂y). Since

l(∂(0, y)) + ∂l(0, y) = l((0,−∂y)) − ∂i∗y = i∗(∂y) − ∂i∗y = 0, (2.6)

and

l(∂(x,0)) + ∂l(x,0) = l((∂x, f (x))) + ∂j∗h(x) = j∗h(∂x) − i∗f (x) + ∂j∗h(x)

= j∗k∗(x) − i∗f (x) = 0 (2.7)

therefore∂l+ l∂ = 0. Consider diagram
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where the first row corresponds to the pair (Conef ,Cylf ) and the right vertical arrow comes
from

Sn−1(X) → Sn(Cone(X), X) ∼=
exision

Sn(Conef ,Cylf ).

The diagram commutes, and the rows are exact. Since the right and left vertical maps are
quasi-isomorphisms, hence so is the middle map.�

2.6. An integrality criterion

If A andB areR-modules, then any homomorphismκ : A → B induces homomorphisms
κ : Hn(Φ,A) → Hn(Φ,B) andκ : Hn(Φ,A) → Hn(Φ,B). In particular, the injectionι :
Z→ R induces a homomorphism

ι : Hn(Φ,Z) → Hn(Φ,R).

A class [γ] ∈ Hn(Φ,R) is called integral in case [γ] lies in the image of the mapι.

Proposition 2.17. A class [(α, β)] ∈ Hn(Φ,R) is integral if and only if
∫
θ
α− ∫

η
β ∈ Z

for all cycles (θ, η) ∈ Conen(Φ,Z).

Proof. Consider the following commutative diagram

whereHn(Φ,R) → Hom(Hn(Φ,R),R) andτ are pairing given by integral. The mapι̃ is
inclusion map, considering the fact that

Hom(Hn(Φ,R),R) = Hom(Hn(Φ,Z),R).

Thus, [(α, β)] ∈ Hn(Φ,R) is integral if
∫
θ
α− ∫

η
β ∈ Z for all cycles (θ, η) ∈ Conen(Φ,Z).

�

2.7. Bohr–Sommerfeld condition

Let (N,ω) be a symplectic manifold. Recall that an immersionΦ : M → N is isotropic
if Φ∗ω = 0. It is called Lagrangian if furthermore dimM = 1

2 dimN. Suppose that
H1(N,Z) = 0 andω is integral. A Lagrangian immersionΦ : M → N is said to satisfy
the Bohr–Sommerfeld condition[12,18] if for all one-cyclesγ ∈ S1(M)

1

2π

∫
D

ω ∈ Z, where∂D = Φ(γ).
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Note that sinceω is integral, the above condition does not depend on the choice ofD. Also,
if ω = dθ is exact (for example for the cotangent bundles), the condition means that

1

2π

∫
γ

Φ∗θ ∈ Z for all one-cyclesγ.

In terms of relative cohomology, the above condition means that (0, ω) ∈ Ω2(Φ) defines an
integral class inH2

dR(Φ). The interesting feature of this situation is that the forms onM,N

are fixed, and it defines a condition on the mapΦ.

Example 2.18. Let N = R2, M = S1, ω = dx ∧ dy,Φ = inclusion map. Then, the im-
mersionΦ : S1 ↪→ R2 satisfies the Bohr–Sommerfeld condition.

3. Geometric interpretation of integral relative cohomology groups

Let Φ ∈ C∞(M,N), whereM andN are manifolds. LetU = {Ui}i∈I , V = {Vj}j∈J be
good covers ofM andN, respectively, such that there exists a mapr : I → J withΦ(Ui) ⊆
Vr(i).

Proposition 3.1. Hq(Φ,Z) ∼= Hq−1(Φ,U(1) ) for q ≥ 1.

Proof. Consider the following long exact sequence,

· · · → Hq−1(M,R) → Hq(Φ,R) → Hq(N,R) → Hq(M,R) → · · · .

SinceH•(M,R) = 0 andH•(N,R) = 0, one can see thatHq(Φ,R) = 0 for q > 0. By
using the long exact sequence associated to exponential sequence

0 → Z→ R
exp→U(1) → 0 (	)

one can deduce thatHq(Φ,Z) ∼= Hq−1(Φ,U(1)) for q ≥ 1. �

3.1. Geometric interpretation of H1(Φ,Z)

Let X be a manifold. Functionf ∈ C∞(X,U(1)) has global logarithm if there exists a
functionk ∈ C∞(X,R) such thatf = exp((2π

√−1)k).

Definition 3.2. The two mapsf, g : X → U(1) are equivalent iff/g has a global logarithm.

The short exact sequence of sheaves (	) gives an exact sequence of Abelian groups

0 → H0(X,Z) → C∞(X,R)
exp→C∞(X,U(1)) → H1(X,Z) → 0.
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This shows that there is a one-to-one correspondence between equivalence classes and
elements ofH1(X,Z). One should look for a geometric realization ofH1(Φ,Z) for a
smooth mapΦ : M → N. Let

L := {(k, f )|Φ∗f = exp((2π
√−1)k)} ⊂ C∞(M,R) × C∞(N,U(1)).

L has a natural group structure. There is a natural group homomorphism,

τ : C∞(N,R) → L,

whereτ is defined forl ∈ C∞(N,R) by

τ(l) = (Φ∗l,exp((2π
√−1)l)).

Definition 3.3. (k, f ), (k′, f ′) ∈ L are equivalent iff/f ′ = exp((2π
√−1)h) for some func-

tion h ∈ C∞(N,R) such that

Φ∗h = k − k′.

The set of equivalence classes is a groupL/τ(C∞(N,R)).

Theorem 3.4. There exists an exact sequence of groups

C∞(N,R)
τ→L→ H1(Φ,Z) → 0.

Thus,H1(Φ,Z) parameterizes equivalence classes of pairs (k, f ).

Proof. The first step is to construct a group homomorphism

χ : L→ H1(Φ,Z).

Given (k, f ), let lj ∈ C∞(Vj,R) be local logarithms forf |Vj , that is f |Vj =
exp((2π

√−1)lj). On overlaps,ajj′ := lj′ − lj : Vjj′ → Z defines aČech cocycle in
Č1(N,Z). Let

bi := Φ∗lr(i) − k|Ui : Ui → Z.

Sinceb′
i − bi = Φ∗ar(i)r(i′), so that (b, a) defines ǎCech cocycle iňC1(Φ,Z). Given another

choice of local logarithms̃lj, theČech cocycle changes to

b̃i = bi +Φ∗cr(i), ãjj′ = ajj′ + cj′ − cj

where cj = l̃j − lj : Vj → Z. Thus, (̃b, ã) = (b, a) + d(0, c), and χ(k, f ) := [(b, a)] ∈
H1(Φ,Z) is well-defined. Similarly, if (b, a) = d(0, c) then the new local logarithms
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l̃j = lj − cj satisfyãjj′ = 0, which means thatl̃j patches to a global logarithm̃l.bi = Φ∗cr(i)
implies thatk|Ui = Φ∗ l̃r(i), which meansk = Φ∗ l̃. This shows that the kernel ofχ consists
of (k, f ) such that there existsl ∈ C∞(N,R) with f = exp((2π

√−1)l) andk = Φ∗l, i.e.,
ker(χ) = im(τ).

Finally, it is shown below thatχ is surjective. Suppose that (b, a) ∈ Č1(Φ,Z) is a cocycle.
Then

aj′j′′ − ajj′′ + ajj′ = 0, (3.1)

Φ∗ar(i)r(i′) = bi′ − bi. (3.2)

Choose a portion of unity
∑
j∈J hj = 1 subordinate to the open coverV = {Vj}j∈J . Define

fj ∈ C∞(Vj, U(1)) by

fj = exp

2π
√−1

∑
p∈J

ajphp

 .
By applying(3.1)onVj ∩ Vj′ one has

fjf
−1
j′ = exp

2π
√−1

∑
p∈J

ajphp

 exp

−2π
√−1

∑
p∈J

aj′php


= exp

2π
√−1

∑
p∈J

ajj′hp

 = 1.

Hencefi defines a mapf ∈ C∞(N,U(1)) such thatf|Vj = fj. Defineki ∈ C∞(Ui,R) by

ki =
∑
p∈J

(Φ∗ar(i)p + bi)Φ
∗hp. (3.3)

Sincebi ∈ Z, exp((2π
√−1)ki) = Φ∗f |Ui . One can check that on overlapsUi ∩ Ui′ , ki −

ki′ = 0, so that{ki} defines a global functionk ∈ C∞(M,R) withΦ∗f = exp((2π
√−1)k).

Indeed, by applying (3.1) and (3.2) onUi ∩ Ui′ one can obtain∑
p∈J

(Φ∗ar(i)p +Φ∗apr(i′) + bi − bi′ )Φ
∗hp =

∑
p∈J

(Φ∗ar(i)r(i′) + bi − bi′ )Φ
∗hp = 0.

By constructionχ(k, f ) = [(b, a)], which showsχ is surjective. �

Remark 3.5. Any (k, f ) ∈ Ldefines aU(1)-valued function on the mapping cone, Coneφ =
N ∪Φ Cone(M), given byf on N and by exp((2π

√−1)tk) on Cone(M). Here,t ∈ I is the
cone parameter. Hence, one obtains a map

L→ H1(ConeΦ,Z) ∼= H1(Φ,Z).

This gives an alternative way of provingTheorem 3.4.
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3.2. Geometric interpretation of H2(Φ,Z)

Denote the group of Hermitian line bundles overM with Pic(M) and the subgroup of
Hermitian line bundles overM which admits a unitary section with Pic0(M). Recall that
there is an exact sequence of Abelian groups

0 → Pic0(M) ↪→ Pic(M)
δ→H2(M,Z) → 0

defined as follows. For the line bundleL overM with transition mapscii′ ∈ C∞(Uii′ , U(1))
over good cover{Ui}i∈I for M, δ(L) is the cohomology class of the two-cocycleaii′i′′ :
Uii′i′′ → Z given as

aii′i′′ :=
(

1

2π
√−1

(log ci′i′′ − log cii′′ + log cii′ )

)
∈ Z.

Thus, one can say two Hermitian line bundlesL1 andL2 overM are equivalent if and only
if L1L

−1
2 admits a unitary section. The exact sequence shows thatH2(M,Z) parameterizes

the equivalence classes of line bundles[19]. The classδ(L) := c1(L) is called the first
Chern class ofL. Similarly, for a smooth mapΦ : M → N one should look for a geometric
realization ofH2(Φ,Z).

Definition 3.6. Suppose thatΦ ∈ C∞(M,N) andL1, L2 are two Hermitian line bundles
over N, andσ1, σ2 are unitary sections ofΦ∗L1, Φ

∗L2. Then, (L1, σ1) is equivalent to
(L2, σ2) if L1L

−1
2 admits a unitary sectionτ, and there is a mapf ∈ C∞(M,R) such that

(Φ∗τ)/σ1σ
−1
2 = exp((2π

√−1)f ).

This defines an equivalence relation among (σ,L), whereL is a Hermitian line bundle over
N andσ is a unitary section ofΦ∗L.

Definition 3.7. A relative line bundle forΦ ∈ C∞(M,N) is a pair (σ,L), whereL is a
Hermitian line bundle overN andσ is an unitary section forΦ∗L. Define the group of
relative line bundles

Pic(Φ) = {(σ,L)|L ∈ Pic(N), σ a unitary section ofΦ∗L},

and a subgroup of it

Pic0(Φ) = {(σ,L) ∈ Pic(Φ)|∃ a unitary sectionτ ofLandk ∈ C∞(M,R) withΦ∗τ/σ

= exp((2π
√−1)k)}.

Example 3.8. Let (N,ω) be a compact symplectic manifold of dimension 2n, and let
L → N be a line bundle with connection∇ whose curvature isω, i.e.,L is a pre-quantum
line bundle with connection. A Lagrangian submanifoldM satisfies the Bohr–Sommerfeld
condition if there exists a global non-vanishing covariant constant(=flat) sectionσM of
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Φ∗L, whereΦ : M → N is inclusion map (1.6[18]). For any Lagrangian submanifoldM,
(σM,L) ∈ Pic(Φ).

Theorem 3.9. There is a short exact sequence of Abelian groups

0 → Pic0(Φ) → Pic(Φ) → H2(Φ,Z) → 0.

Thus,H2(Φ,Z) parameterizes the set of equivalence classes of pairs (σ,L).

Proof. One can identifyH2(Φ,Z) with H1(Φ,U(1)) by Proposition 3.1. Let (σ,L) ∈
Pic(Φ). Let {Vj}j∈J be a good cover ofN and {Ui}i∈I be a good cover ofM such that
there exists a mapr : I → J with Φ(Ui) ⊆ Vr(i). Choose unitary sectionsσj of L|Vj . The
corresponding transition functions forL are

gjj′ ∈ C∞(Vjj′ , U(1)), j, j′ ∈ J, gjj′σj = σj′ on Vjj′

Definefi = Φ∗(σr(i))/σ onUi. Then

fif
−1
i′ = (Φ∗(σr(i))/σ) · (Φ∗(σr(i′))/σ)−1 = Φ∗gr(i)r(i′). (3.4)

Since

(δg)r(i)r(i′)r(i′′) = 1,

then (fi, gr(i)r(i′)) is a cocycle inČ1(Φ,Z). If one changes local sectionsσj, j ∈ J , then
(fi, gr(i)r(i′)) will shift by a co-boundary. Define

χ : Pic(Φ) −→ H1(Φ,U(1)), (σ,L) 
→ [(f, g)].

To find the kernel of χ, suppose that (f, g) = δ(t, c). Thus, g = δc and f =
φ∗(c) exp(2πih)−1, whereh is the global logarithm oft. Define local sectionτj := σj/cj
onVj. Since onVjj′

σj/cj = σj′/cj′ ,

then we obtain a global sectionτ. On the other hand,

Φ∗σr(i)/σ = fi = φ∗cr(i) exp((2π
√−1)h)−1.

Therefore,φ∗τ/σ = exp((2π
√−1)h)−1. This exactly shows that the kernel ofχ is Pic0(Φ).

Next, it will be shown thatχ is onto. Let (fi, gjj′ ) ∈ C1(Φ,U(1)) be a cocycle. Pick a
line bundleL overN with gjj′ corresponding to local sectionsσj. Φ∗σr(i)/fi defines local
sections forΦ∗L overUi. OnUi ∩ Ui′

Φ∗σr(i)/fi = Φ∗σr(i′)/fi′ ,
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which defines a global sectionσ for Φ∗L. By construction,χ(σ,L) = [(f, g)]. This shows
thatχ is onto. �

Remark 3.10. A relative line bundle (L, σ) for the mapΦ : M → N defines a line bundle
over the mapping cone, ConeΦ = N ∪Φ Cone(M). This line bundle is given byL onN ⊂
ConeΦ and by the trivial line bundle on Cone(M). The sectionσ is used to glue these two
bundles. Hence, one obtains a map

Pic(Φ) → H2(ConeΦ,Z) ∼= H2(Φ,Z).

3.3. Gerbes

The main references for this section are[16,5,15].
Let U = {Ui}i∈I be an open cover for a manifoldM. It will be convenient to introduce

the following notations. Suppose that there is a collection of line bundlesLi(0),...,i(n) on
Ui(0),...,i(n) . Consider the inclusion maps,

δk : Ui(0),...,i(n+1) → Ui(0),...,i(k),...,i(n+1) (k = 0, · · · , n+ 1),

and define Hermitian line bundles (δL)i(0),...,i(n+1) overUi(0),...,i(n+1) by

δL :=
k=0⊗
n+1

(δ∗kL)(−1)k .

Notice thatδ(δL) is canonically trivial. If one has a unitary sectionλi(0),...,i(n) of Li(0),...,i(n)

for eachUi(0),...,i(n) �= ∅, then one can defineδλ in a similar fashion. Note thatδ(δλ) = 1 as
a section of trivial line bundle.

Definition 3.11. A gerbe on a manifoldM on an open coverU = {Ui}i∈I of M is defined
by Hermitian line bundlesLii′ on eachUii′ such thatLii′ ∼= L−1

i′i , and a unitary sectionθii′i′′
of δL onUii′i′′ such thatδθ = 1 onUii′i′′i′′′ . Denote this data asG = (U, L, θ).

Denote the set of all gerbes onM on the open coverU = {Ui}i∈I as Ger(M,U). Recall that
an open coverV = {Vj}j∈J is a refinement of open coverU = {Ui}i∈I if there is a map
r : J → I with Vj ⊂ Ui. In this case, one gets a map

Ger(M,U) ↪→ Ger(M,V).

Define the group of gerbes onM as

Ger(M) = lim→ Ger(M,U).
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Define the product of two gerbesG andG′ to be the gerbeG⊗ G′ consisting of an open cover
of M,V = {Vi}i∈I (common refinement of open covers ofG andG′), line bundlesLii′ ⊗ L′

ii′
onVii′ and unitary sectionsθii′i′′ ⊗ θ′ii′i′′ of δ(L⊗ L′) onVii′i′′ .
G−1, the dual of a gerbeG, is defined by dual bundlesL−1

ii′ onUii′ and sectionsθ−1 of
δ(L−1) overUii′i′′ . Therefore, one get a group structure on Ger(M). If Φ : M → N be a
smooth map between two manifolds andG be a gerbe onN with open coverV = {Vj}j∈J ,
the pull-back grebeΦ∗G is simply defined onU = {Ui}i∈I , whereΦ(Ui) ⊂ Vr(i) for a map
r : I → J , line bundlesΦ∗Lr(i)r(i′) onUii′ , and unitary sectionsθ of δ(Φ∗L) onUii′i′′ .

Definition 3.12 (Quasi-line bundle). A quasi-line bundle for the gerbeG on a manifoldM
on the open coverU = {Ui}i∈I is defined as:

(1) a Hermitian line bundleEi over eachUi.
(2) Unitary sectionsψii′ of

(δE−1)ii′ ⊗ Lii′

such thatδψ = θ.

Denote this quasi-line bundle asL = (E,ψ).

Proposition 3.13. Any two quasi-line bundles over a given gerbe differ by a line bundle.

Proof. Consider two quasi-line bundlesL = (E,ψ) and L̃ = (Ẽ, ψ̃) for the gerbeG =
(U, L, θ). ψii′ ⊗ ψ̃−1

ii′ is a unitary section for

Ei′ ⊗ E−1
i ⊗ L−1

ii′ ⊗ Ẽ−1
i′ ⊗ Ẽi ⊗ Lii′ ∼= Ei′ ⊗ E−1

i ⊗ Ẽ−1
i′ ⊗ Ẽi

∼= Ei′ ⊗ Ẽ−1
i′ ⊗ E−1

i ⊗ Ẽi.

Therefore,E⊗ Ẽ−1 defines a line bundle overM. �

Denote the group of all gerbes onM related to the open coverU = {Ui}i∈I that admits a
quasi-line bundle as Ger0(M,U). Define

Ger0(M) = lim→ Ger0(M,U).

Proposition 3.14. There exists a short exact sequence of groups

0 → Ger0(M) ↪→ Ger(M)
χ→H3(M,Z) → 0.

Proof. IdentifyH3(M,Z) withH2(M,U(1)). Consider the gerbeG onM. Refine the cover
such that anyLii′ admits unitary sectionsσii′ . Define

t := (δσ)θ−1.
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Thus,δt = 1, which meanst is a cocycle. Define

χ(G) := [t].

Different sections shift the cocycle byδČ1(M,U(1)), which shows thatχ is well-defined.
Also,χ(G⊗ G′) = [tt′] = χ(G)χ(G′), which proves thatχ is a group homomorphism. Next,
it will be shown that the kernel ofχ is Ger0(M). ForG ∈ Ger0(M), choose a quasi-line bundle
L = (E,ψ). Thus,t = δ(σψ−1). Hence,χ(G) = [t] = 1. Conversely, if [t] = 1, then

t = δt′,

and by defining the new sectionsσ′ = t′σ one infers thatδσ′ = tδσ = θ, which shows that
G admits a quasi-line bundle.

Finally, it will be shown thatχ is onto. IfU = {Ui}i∈I is an open cover ofM andtii′i′′ is
a cocycleČ2(M,U(1)), then define a gerbeG on M by trivial line bundleLii′ onUii′ and
unitary sectionsσii′ onUii′ . Defineθ = tδσ. Sinceδt = 1, thenδθ = 1. By construction,
χ(G) = [t]. �

Definition 3.15. Let G ∈ Ger(M). χ(G) ∈ H2(M,U(1)) ∼= H3(M,Z) is called Dixmier–
Douady class of the gerbeG, which is denoted as DDG.

A gerbe admits a quasi-line bundle if and only if its Dixmier–Douady class is zero by
Proposition 3.14.

Example 3.16. Let G be a Lie group, and 1→ U(1) → Ĝ→κ G → 1 be a central exten-
sion. Suppose thatπ : P → M is a principalG-bundle. A lift ofπ : P → M is a principal
Ĝ-bundleπ̂ : P̂ → M together with a mapq : P̂ → P such that̂π = π ◦ qand the following
diagram commutes:

In the above diagram the horizontal maps are respective group actions. Suppose that{Ui}i∈I
is an open cover ofM such thatP |Ui := Pi has a liftP̂i. DefineĜ-equivariant Hermitian
line bundles as

Ei = P̂i ×U(1) C→ P |Ui .

SinceU(1) acts by weight 1 onEi, it acts by weight 0 onEi ⊗ E−1
i′ := Eii′ onUii′ . There-

fore, G acts onEii′ , andEii′/G is a well-defined Hermitian line bundle, namelyLii′ . By
construction,δL is trivial onUii′i′′ , therefore one can pick trivial sectionθ that obviously
satisfies the relationδθ = 1. This shows the obstruction to liftingP to P̂ defines a grebeG.

If Ei → Ui defines a quasi-line bundleL for G, then the line bundles̃Ei := Ei ⊗ π∗L−1
i

patch together to a global̂G-equivariant line bundlêE → P , and the unit circle bundle
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defines a global liftP̂ → P . Conversely, ifP admits a global liftP̂ andP̃i =: P̂ |Ui , then
Lii′ is trivial, which shows that the resulting gerbe is a trivial one.

Example 3.17. Let N ⊂ M be an oriented codimension 3 submanifold of ann-oriented
manifoldM. The tubular neighborhoodU0 of N has the formP ×SO(3)R

3, whereP → N is
the frame bundle. LetU1 = M −N. Then,U0 ∩ U1 ∼= P ×SO(3) (R3 − 0). Over (R3 − 0) ∼=
S2 × (0,∞), one has degree 2 line bundleE that isSO(3) equivariant. Thus,

L01 := P ×SO(3)E

is a line bundle overU0 ∩ U1, which defines the only transition line bundle. Since there is
no triple intersection, this data defines a gerbe overM.

3.4. Geometric interpretation of H3(Φ,Z)

Definition 3.18. A relative gerbe forΦ ∈ C∞(M,N) is a pair (L,G), whereG is a gerbe
overN andL is a quasi-line bundle forΦ∗G.

Notation: LetΦ ∈ C∞(M,N). Then

Ger(Φ) = {(L,G)|(L,G) is a relative gerbe forΦ ∈ C∞(M,N)},

Ger0(Φ) = {(L,G) ∈ Ger(Φ)|Gadmits a quasi-line bundleL′ sth the line bundleL

⊗Φ∗L′−1 admits a unitary section}.

Example 3.19. Consider a smooth mapΦ : M → N with dimM ≤ 2. LetG be a grebe on
N. SinceΦ∗G admits a quasi-line bundle sayL, (L,G) is a relative gerbe.

Theorem 3.20. There exists a short exact sequence of Abelian groups

0 → Ger0(Φ) ↪→ Ger(Φ)
κ→H3(Φ,Z) −→ 0.

Proof. One can identifyH3(Φ,Z) ∼= H2(Φ,U(1)). Let {Vj}j∈J be a good cover of N and
{Ui}i∈I be a good cover ofM such that there exists a mapr : I → J withΦ(Ui) ⊆ Vr(i). Let
(L,G) ∈ Ger(Φ). Refine the gerbeG = (U, L, θ) sufficiently such that allLjj′ admit unitary
sectionsσjj′ . Then, definetjj′j′′ ∈ Č2(N,U(1)) by

t := (δσ)(θ)−1.

Sinceδθ = 1 andδ(δσ) = 1, thenδt = 1. LetL = (E,ψ) be a quasi-line bundle forΦ∗Gwith
unitary sectionsψii′ for line bundles ((δE)ii′ )−1 ⊗Φ∗Lr(i)r(i′). Definesii′ ∈Č1(M,U(1)) by

sii′ := (ψii′ )
−1((δλ)−1

ii′ ⊗Φ∗σr(i)r(i′)),
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whereλi is a unitary section forEi. Now

(Φ∗t−1)δ(Φ∗σ) = Φ∗θ = δψ = (δs)−1(δδλ−1 ⊗ δΦ∗σ) = (δs)−1δΦ∗σ. (3.5)

This proves thatδs = Φ∗t. Define the map

κ : Ger(Φ) → H2(Φ,U(1)), κ(L,G) = [(s, t)].

It is straightforward to check that this map is well-defined, i.e., it is independent of the
choice ofσjj′ andλi. Conversely, given [(s, t)] ∈ H2(Φ,U(1)), one can pickG such that
θ = t−1(δσ) and define

ψii′ = s−1
ii′ ((δλ−1)ii′ ⊗Φ∗σr(i)r(i′)).

Sinceδs = Φ∗t, thenL = (E,ψ) defines a quasi-line bundle forΦ∗G. The construction
showsκ(L,G) = [(s, t)]. Thereforeκ is onto.

It is now shown that ker(κ) = Ger0(Φ). Assumeκ(L,G) = [(s, t)] is a trivial class. There-

fore, there exists (ρ, τ) ∈ Č
1
(Φ,U(1)) such that (s, t) = δ(ρ, τ) = (Φ∗τ(δρ)−1, δτ). t = δτ

shows thatG admits a quasi-line bundleL′. Thus,L⊗Φ∗L′−1 defines a line bundle over
M. The first Chern class of this line bundle is given by the cocycles(Φ∗τ)−1. The condition
s = (Φ∗τ)δρ−1 shows that this cocycle is exact, i.e., the line bundleL⊗Φ∗L′−1 admits a
unitary section. Thus, ker(κ) ⊆ Ger0(Φ). Conversely, if (L,G) ∈ Ger0(Φ) then the above
argument, read in reverse, shows that (s, t) is exact. Hence, Ger0(Φ) ⊆ ker(κ). �

Remark 3.21. A relative (topological) gerbe (L,G) ∈ Ger(Φ) defines a (topological) gerbe
over the mapping cone by “gluing” the trivial gerbe over Cone(M) with the gerbeG over
N ⊂ ConeΦ. Here, the line bundlesEi that defineL play the role of transition line bundles.
For gluing the gerbes see[22].

Example 3.22. Let 1 → U(1) → Ĝ → G → 1 be a central extension of a Lie groupG.
SupposeΦ ∈ C∞(M,N) andQ → N is a principalG-bundle. IfP = Φ∗Q → M admit a
lift P̂ , then one obtains an element ofH3(Φ,Z).

Example 3.23. Suppose thatG is a compact Lie group. Recall that the universal bun-
dleEG → BG is a (topological) principalG-bundle with the property that any principal
G-bundleP → B is obtained as the pull-back by some classifying mapΦ : B → BG.
While the classifying bundle is infinite-dimensional, it can be written as a limit of finite-
dimensional bundlesEnG → BnG. For instance, ifG = U(k), one can takeEnG the Stiefel
manifold of unitaryk-frames over the GrassmanianGrC(k, n). Furthermore, ifB is given,
anyG-bundleP → B is given by a classifying mapΦ : B → BnG for some fixed, suffi-
ciently largen depending only on dimB [17].

It can be shown thatH3(BG,Z) classifies central extension 1→ U(1) → Ĝ → G → 1
[3]. For n sufficiently large,H3(BnG,Z) = H3(BG,Z). Hence,H3(Φ,Z) classifies pairs
(Ĝ, P̂), whereĜ is a central extension ofG byU(1) andP̂ is a lift of Φ∗EG to Ĝ.
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4. Differential geometry of relative gerbes

4.1. Connections on line bundles

Let L be a Hermitian line bundle with Hermitian connection∇ over a manifoldM. In
terms of local unitary sectionsσi of L|Ui and the corresponding transition maps

gii′ : Uii′ → U(1),

connection one-formsAi onUi are defined by∇σi = (2π
√−1)Aiσi. OnUii′ ,

(2π
√−1)(Ai′ − Ai) = g−1

ii′ dgii′ .

Hence, the differentials dAi agree on overlaps. The curvature two-formF is defined by
F |Ui =: dAi. The cohomology class ofF is independent of the chosen connection. The
cohomology class ofF is the image of the Chern classc1(L) ∈ H2(M,Z) in H2(M,R).
A given closed two-formF ∈ Ω2(M,R) arises as a curvature of some line bundle with
connection if and only ifF is integral[4].

The line bundle with connection (L,∇) is called flat ifF = 0. In this case, define the
holonomy of (L,∇) as follows. Assume that the open cover{Ui}i∈I is a good cover ofM.
Therefore,Ai = dfi onUi, wherefi : Ui → R is a smooth map onUi. Then,

d(2π
√−1(fi′ − fi) − loggii′ ) = 0.

Thus,

cii′ := (2π
√−1(fi′ − fi) − loggii′ )

are constants. Since logg is only defined modulo 2π
√−1Z, so there exists a collection

of constants ˜cii′ := cii′ modZ. Different choices offi, shift this cocyle with a coboundary.
The one-cocycle ˜cii′ represents ǎCech class iňH1(M,U(1)), which is called theholonomy
of the flat line bundleL with connection∇.

Let L → M be a line bundle with connection∇, andγ : S1 → M a smooth curve.
The holonomy of∇ aroundγ is defined as the holonomy of the line bundleγ∗L with flat
connectionγ∗∇.

4.2. Connections on gerbes

Definition 4.1. Let G = (U, L, θ) be a gerbe on a manifoldM. A gerbe connection onG
consists of connections∇ii′ on line bundlesLii′ such that (δ∇)ii′i′′θii′i′′ := (∇i′i′′ ⊗ ∇−1

ii′′ ⊗
∇ii′ )θii′i′′ = 0, together with two-forms�i ∈ Ω2(Ui) such that onUii′ ,

(δ�)ii′ = Fii′ = the curvature of∇ii′ .

This connection gerbe is denoted as a pair (∇,�).
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SinceFii′ is a closed two-form, the de Rham differentialκ|Ui := d�i defines a global three-
form κ, which is called thecurvature of the gerbe connection. [κ] ∈ H3(M,R) is the image
of the Dixmier–Douady class of the gerbe under the induced map by inclusion

ι : H3(M,Z) → H3(M,R).

A given closed three-formκ ∈ Ω2(M,R) arises as a curvature of some gerbe with connection
if and only if iκ is integral[16].

Example 4.2. Suppose thatπ : P → B is a principalG-bundle, and

1 → U(1) → Ĝ → G → 1

a central extension. InExample 3.16, a gerbeG is described whose Dixmier–Douady class
is the obstruction to the existence of a liftπ̂ : P̂ → B. Following Brylinski [4] (also see
[10]) one can define a connection on this gerbe. Two ingredients are required:

(i) a principal connectionθ ∈ Ω1(P, g),
(ii) a splitting τ : P ×G ĝ→ B× R of the sequence of vector bundles

0 → B× R→ P ×G ĝ→ P ×G g→ 0

associated to the sequence of Lie algebras 0→ R→ ĝ→ g→ 0. For a given lift π̂ :
P̂ → B, with corresponding projectionq : P̂ → P , one say that a principal connection
θ̂ ∈ Ω1(P̂, ĝ) lifts θ if its image underΩ1(P̂, ĝ) → Ω1(P̂, g) coincides withq∗θ. Given
such a lift with curvature

Fθ = dθ̂ + 1

2
[θ̂, θ̂] ∈ Ω2(P̂, ĝ)basic= Ω2(B,P ×G g),

letKθ := τ(Fθ) ∈ Ω2(B,R) be its “scalar part.” Any pair of lifts of (P, θ) differs by a line
bundle with connection (L,∇L) onB. Twisting a given lift (̂P, θ̂) by such a line bundle, the
scalar part changes by the curvature of the line bundle[4]

Kθ + 1

2π
√−1

curv (∇L). (4.1)

In particular, the exact three-form dKθ ∈ Ω3(B) only depends on the choice of splitting and
the connectionθ. (It does not depend on choice of lift.) In general, a global liftP̂ of P does
not exist. However, let us choose local lifts (P̂i, θ̂i) of (P |Ui, θ). Denote the scalar part of
Fθi with�i ∈ Ω2(Ui), and letLii′ → Uii′ be the line bundle with connection∇Lii′ defined
by two lifts (P̂i|Uii′ , θ̂i) and (P̂i′ |Uii′ , θ̂i′ ). By Eq.(4.1),

(δ�)ii′ = 1

2π
√−1

curv (∇Lii′ ).
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On the other hand, the connectionδ∇L on (δL)ii′i′′ = Lii′L
−1
ii′′ Lii′ is just the trivial connection

on the trivial line bundle. Hence, a gerbe connection is defined.
A quasi-line bundle (E,ψ) with connection∇E for this gerbe with connection gives rise

to a global lift (P̂, θ̂) of (P, θ), whereP̂ |Ui is obtained by twistinĝPi by the line bundle with

connection (Ei,∇Ei ). The error two-form is the scalar part ofFθ̂ (seeDefinition 4.3).

Definition 4.3. Let G be a gerbe with connection with a quasi-line bundleL = (E,ψ).
A connection on a quasi-line bundle consists of connections∇E

i on line bundlesEi with
curvatureFEi such that

(δ∇E)ii′ := ∇E
i′ ⊗ (∇E

i )−1 ∼= ∇ii′ .

Also, the two-curvatures obey (δFE)ii′ = Fii′ . Denote this quasi-line bundle with connection
by (L,∇E). Locally defined two-formsω|Ui = �i − FEi patch together to define a global
two-formω, which is called the error two-form[15].

Remark 4.4. The difference between two quasi-line bundles with connections is a line
bundle with connection, with the curvature equal to the difference of the error two-forms.

Let G = (U, L, θ) be a gerbe with connection onM. Again, assume thatU is a good cover.
Let t ∈ Č2(M,U(1)) be a representative for the Dixmier–Douady class ofG. Then, one can
have a collection of one-formsAii′ ∈ Ω1(Uii′ ) and two-forms�i ∈ Ω2(Ui) such that

κ|Ui = d�i, δ� = dA, (2π
√−1)δA = t−1 dt.

If κ = 0, the gerbe is called flat. In this case by using Poincaré lemma,�i = dµi onUi and
onUii′ ,

(δ�)ii′ = dδ(µ)ii′ = dAii′ .

Thus, again by Poincaré lemma

Aii′ − (δµ)ii′ = dhii′ .

By using (2π
√−1)δA = t−1 dt,

d((2π
√−1)δh− log t) = 0.

Therefore, there exists a collection of constantscii′i′′ ∈ Č2(M,R). Since log is defined
modulo 2π

√−1Z, we define

c̃ii′i′′ := cii′i′′ modZ.
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The two-cocycle ˜cii′i′′ represents ǎCech class iňH2(M,U(1)), which is called theholonomy
of the flat gerbe with connection. Let σ : Σ → M be a smooth map, whereΣ is a closed
surface. The holonomy ofG aroundΣ is defined as the holonomy of the pullback gerbe
σ∗G with the flat connectionσ∗(∇,�) [16,20].

4.3. Connections on relative gerbes

LetΦ ∈ C∞(M,N) andU = {Ui}i∈I ,V = {Vj}j∈J are good covers ofM andN, respec-
tively, such that there exists a mapr : I → J with Φ(Ui) ⊆ Vr(i).

Definition 4.5 (A). relative connection on a relative gerbe (L,G) consists of gerbe con-
nection (∇,�) on G and a connection∇E on the quasi-line bundleL = (E,ψ) for the
Φ∗G.

Consider a relative connection on a relative gerbe (L,G). Define the two-formτ on M by

τ|Ui := Φ∗�r(i) − FEi .

Thus, (τ, κ) ∈ Ω3(Φ) is a relative closed three-form which is called here thecurvature of
the relative connection.

Theorem 4.6. A given closed relative three-form (τ, κ) ∈ Ω3(Φ) arises as a curvature of
some relative gerbe with connection if and only if (τ, κ) is integral.

Proof. Let (τ, κ) ∈ Ω3(Φ) be an integral relative three-form. ByProposition 2.17,∫
α

κ −
∫
β

τ ∈ Z, (4.2)

whereα ⊂ N is a smooth three-chain andΦ(β) = ∂α, i.e., (β, α) ∈ Cone3(Φ,Z) is a cycle.
If α is a cycle then (0, α) ∈ Cone3(Φ,Z) is a cycle. In this case, Eq.(4.2)shows that for all
cyclesα ∈ S3(N,Z),∫

α

κ ∈ Z.

Therefore, one can pick a gerbeG = (V, L, θ) with connection (∇,�) overN with curvature
three-formκ. Denoteτi := τ|Ui . DefineFEi ∈ Ω2(Ui) by

FEi = Φ∗�r(i) − τi.

Let (αi, βi) ∈ Cone3(Φ|Ui,Z) be a cycle. Then,∫
βi

FEi =
∫
βi

(Φ∗�r(i)−τi) =
∫
Φ(βi)

�−
∫
βi

τ =
∫
αi

d� −
∫
βi

τ =
∫
αi

κ −
∫
βi

τ ∈ Z.

Therefore, one can find a line bundleEi with connection overUi whose curvature is equal to
FEi . OverUii′ , the curvature of two line bundlesΦ∗Lii′ andEi′ ⊗ E−1

i agrees. Assume that
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the open coverU = {Ui}i∈I is a good cover ofM. Thus, there is a unitary sectionψii′ for the
line bundleEi ⊗ E−1

i′ ⊗Φ∗Lii′ such thatδψ = Φ∗θ. Therefore, one obtains a quasi-line
bundleL = (E,ψ) with connection forΦ∗G. By construction the curvature of the relative
gerbe (L,G) is (τ, κ). Conversely, for a given relative gerbe with connection (L,G) one can
have

∫
βi
FEi ∈ Z, whereβi ⊂ Ui is a two-cycle which gives(4.2). �

Suppose thatG is a gerbe with a flat connection (∇,�) onN andL a quasi-line bundle
with connection forΦ∗G. Sinceκ = 0, as explained in the previous section, there exist two-
cocycles ˜cii′i′′ that represent a cohomology class inȞ2(M,U(1)). SinceΦ∗G is trivializable,
there is a collection of mapsfii′ onUii′ such thatδf = Φ∗t, wherej = r(i) andj′ = r(i′).
Definekii′ ∈ R as

kii′ =: (2π
√−1)Φ∗hii′ − logfii′ ,

and

k̃ii′ := kii′ modZ.

Thus,

Φ∗c̃ = δk̃.

Define therelative holonomy of the pair (G,L) by the relative class [(k̃, c̃)] ∈ H2(Φ,U(1)).

Definition 4.7. Let the following diagram be commutative:

whereΣ is a closed surface,i is inclusion map and all other maps are smooth. Suppose that
G is a gerbe with connection onN, andΦ∗G admits a quasi-line bundleL with connection.
Clearly, ψ̃∗G is a flat gerbe and sincei∗ψ̃∗G = ψ∗Φ∗G then i∗ψ̃∗G admits a quasi line
bundle with connection that is equal toψ∗L . Define the holonomy of the relative gerbe
around the commutative diagram as holonomy of the pair (ψ∗L, ψ̃∗G).

4.4. Cheeger–Simons differential characters

In this section, a relative version of Cheeger–Simons differential characters is developed
[23,2,13,25]. Denote the smooth singular chain complex on a manifoldM asSsm• (M). Let
Zsm• (M) ⊆ Ssm• (M) be the sub-complex of smooth cycles. Recall that a differential character
of degreek on a manifoldM is a homomorphism

j : Zsm
k−1(M) → U(1),

such that there is a closed formα ∈ Ωk(M) with
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j(∂x) = exp

(
2π

√−1
∫
x

α

)
for anyx ∈ Ssm

k (M) [6].
A connection on a line bundle defines a differential character of degree 2, wherej is the

holonomy map. Similarly, a connection on a gerbe defines a differential character of degree
3. Specifically, any smoothk-chainx ∈ Ssm

k (M) is realized as a piecewise smooth map

ϕx : Kx → M,

whereKx is ak-dimensional simplicial complex[14]. Then, by definition∫
Kx

α =
∫
x

α, α ∈ Ωk(M).

Suppose thaty = Σεiσi ∈ Zsm
2 (M), whereεi = ±1. Assume thatG is a gerbe with con-

nection overM. SinceH3(Ky,Z) = 0, ϕ∗
yG admits a piecewise smooth quasi-line bundleL

with connection. That is, a quasi-line bundleLi for all ϕ∗G |∆kσi , such that allLi agree on

the matching boundary faces. Letω ∈ Ω2(Ky) be the error two-form and define

j(y) := exp

(
2π

√−1
∫
Ky

ω

)
.

Any two quasi-line bundles differ by a line bundle, and hence different choices forLi,
changeω by an integral two-form. Therefore,j is well-defined. Assume thaty = ∂x. Since
the components ofKx with empty boundary do not contribute, one can assume that each
component ofKx has non-empty boundary. SinceH3(Kx,Z) = 0, choose a quasi-line
bundle with connection forϕ∗

xG with error two-formω. Let k be the curvature ofG. Since
ϕ∗
xk = dω, by stokes’ theorem∫

Kx

k =
∫
Kx

dω =
∫
∂Kx

ω =
∫
Ky

ω.

This shows thatj is a differential character of degree 3.

Definition 4.8. Let Φ ∈ C∞(M,N) be a smooth map between manifolds. A relative dif-
ferential character of degreek for the mapΦ is a homomorphism

j : Zsm
k−1(Φ) → U(1),

such that there is a closed relative form (β, α) ∈ Ωk(Φ) with

j(∂(y, x)) = exp

(
2π

√−1

(∫
y

β −
∫
x

α

))
for any (y, x) ∈ Ssm

k (Φ).
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Theorem 4.9. A relative connection on a relative gerbe defines a relative differential char-
acter of degree 3.

Proof. LetΦ ∈ C∞(M,N) be a smooth map between manifolds, and consider a relative
grebe (L,G) with connection. Let (y, x) ∈ Ssm

1 (Φ) be a smooth relative singular cycle, i.e.,

∂y = 0,

and

Φ∗(y) = ∂x.

Suppose thatKy andKx are the corresponding simplicial complex, and

Φ : Ky → Kx

is the induced map. Given a relative connection, choose a quasi-line bundleL′ for ϕ∗
xG,

and a unitary sectionσ of the line bundleH := ϕ∗
yL⊗ (Φ∗L′)−1. Let ω̃ ∈ Ω2(N) be the

error two-form forL′, andA ∈ Ω1(M) be the connection one-form forH with respect toσ.
Define a mapj by

j(y, x) := exp

(
2π

√−1

(∫
Kx

ω̃ −
∫
Ky

A

))
.

Choose another quasi-line bundle forϕ∗
xG. Then, the difference of error two-forms is an

integral two-form. Changing the sectionσ will shift connection one-formA to A+ A′,
whereA′ is an integral one-form. Thus,

j : Zsm
2 (Φ) → U(1)

is well-defined. Letk be the curvature three-form forG, andω be the error two-form forL.
Then (ω, k) ∈ Ω3(Φ), and

j(∂(y, x)) = j(∂y,Φ∗(y) − ∂x) = exp

(
2π

√−1

(∫
K(Φ∗(y)−∂x)

ω̃ −
∫
K∂y

A

))

= exp

(
2π

√−1

(∫
KΦ∗(y)

ω̃ −
∫
K∂x

ω̃ −
∫
K∂y

A

))

= exp

(
2π

√−1

(∫
Ky

(Φ∗ω̃ − dA) −
∫
Kx

dω̃

))

= exp

(
2π

√−1

(∫
Ky

ω −
∫
Kx

k

))
.

Thus,j is a relative differential character in degree 3.�
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4.5. Transgression

For a manifoldM, denote its loop space asLM. In this section, a line bundle with
connection overLM is first constructed by transgressing a gerbe with connection over
M. A mapΦ ∈ C∞(M,N) induces a mapLΦ ∈ C∞(LM,LN). Next, it is proven that a
relative gerbe with connection onΦ produces a relative line bundle with connection onLΦ

by transgression.

Proposition 4.10 (Parallel transportation).Suppose that G is a gerbe with connection on
M × [0,1] and G0 = G|(M×{0}). There is a natural quasi-line bundle with connection for
the grebe π∗G0 ⊗ G−1, where π is the projection map

π : M × [0,1] → M × {0}.

Proof. It is obvious that one can obtain a quasi-line bundle with connection for the gerbe
π∗G0 ⊗ G−1. Specify a quasi-line bundleLG for the grebeπ∗G0 ⊗ G−1 by the following
requirements:

1. The pull-backι∗LG is trivial, while ι is inclusion map

ι : M × {0} ↪→ M × [0,1].

2. Letη ∈ Ω3(M × [0,1]) be the curvature three-form forπ∗G0 ⊗ G−1. Note thatι∗η = 0.
Let χ ∈ Ω2(M × [0,1]) be the canonical primitive ofη given by transgression. Then,
choose a connection onLG such that its error two-form isχ. Any two such quasi-line
bundles differ by a flat line bundle overM × [0,1]. This line bundle is a trivial line
bundle overM × {0}. �

Theorem 4.11. A grebe G with connection on M × S1, induces a line bundle EG with
connection on M. Also, a quasi-line bundle with connection for G induces a unitary section
of EG.

Proof. M × S1 = M × [0,1]/ ∼, where the equivalence relation is defined by (m,0) ∼
(m,1) form ∈ M. Therefore,π∗G0 ⊗ G−1|M×{1}/∼ is a trivial gerbe, andLG|M×{1}/∼ is a
quasi-line bundle with connection for this trivial gerbe, i.e., a line bundle with connectionEG
for M. If one changeLG to another natural quasi-line bundle with connection, the difference
between two quasi-line bundles overM × S1 is a trivial line bundle. Thus, the assignment
G→ EG is well-defined.

Suppose that the gerbeG admits a quasi-line bundleL. Then, (π∗L0) ⊗ (L−1) andLG
are two quasi-line bundles for the gerbeπ∗G0 ⊗ G−1, whereL0 = L|M×{0}. Thus,π∗L0 ⊗
L−1 ⊗ (LG)−1 defines a line bundle overM × S1 = M × [0,1]/ ∼. This line bundle over
M defines a maps : M → U(1). (π∗L0) ⊗ (L−1)|M×{0}/∼ is the trivial line bundleE. Since
EG ⊗ E−1 = s, EG admits a unitary section. �
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Remark 4.12. Let G be a gerbe with connection onM. Consider the evaluation map

e : LM × S1 → M.

Thus,e∗G induces a line bundle with connection onLM.

Theorem 4.13. For a given map Φ ∈ C∞(M,N), a relative gerbe with connection GΦ
induces a relative line bundle with connection ELΦ.

Proof. The relative grebeGΦ is a gerbeG on N together with a quasi-line bundle with
connectionL for the pull-back gerbeΦ∗G. The grebeG induces a line bundle with connection
EG. Further, the quasi-line bundle with connectionL forΦ∗G induces a unitary sections for
the line bundle with connection (LΦ)∗EG by Theorem 4.11. Thus, the pair (s, EG) defines
a relative line bundle with connectionELΦ. �
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